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THE SIMILARITY LAW FOR HYPERSONIC FLOW AND REQUIREMENTS FOR DYNAMIC 
SIMILARITY OF RELATED BODIES IN FREE FLIGHT l 

By FHANK M. HAMAKKR, STANFORD E. NKICK, and THOMAS J. WONT 

SUMMARY 

The similarity law for nonsteady, in viscid, hypersonic flow 
about slender three-dimensional shapes in derived in term* of 
customary aerodynamic parameters. The conclusions drawn 
from the potential analysis used in the development of the law 
are shown to be valid for rotational flow. A direct consequence 
of the hypersonic similarity law is that the ratio of the local 
static pressure to the free-stream static pressure is the same at 
corresponding points in similar flow fields. 

Requirements for dynamic similarity of related shapes in free 
flight, including the correlation of their flight paths, are obtained 
using the aerodynamic forces and moments as correlated by the 
hypersonic similarity law. In addition to the conditions of 
hypersonic similarity, dynamic similarity depends upon con- 
ditions derived from the inertial properties of the bodies and the 
immersing fluids. In order to have dynamic similarity, how- 
ever, rolling motions must not occur in combination with other 
motions. 

The law is examined for steady flow about nlahd three- 
dimensional shapes. The results of a computational investiga- 
tion showed that the similarity law as applied to nonlifting 
cones and ogives is applicable over a wide range of Much num- 
bers and fineness ratios. In the special case of inclined bodies 
oj recvtudun, the law is txttnde<i i>i include twine significant 
effects of the viscous cross force. Results of a limited experi- 
mental investigation of the pressures acting on two inclined 

y.o     l*i ^ 

revolution. 

«J    fn     „h„„h    lhc no   it   n-nrt/ifiQ   In   ftrWoVe   of 

INTRODUCTION 

The 113-personie similarity law for steady potential ilows 
about thin airfoil sections and slender nonlifting bodies of 
revolution was first developed by Tsien in reference 1. 
Hayes (ref. 2) investigated this law from the standpoint of 
analogous nonsteady flows and concluded that it would also 
apply to nonpotential flows containing shock waves and 
vorticity, provided the local Mach number was everywhere 
large with respect to 1. He also reasoned that similitude 
could be obtained in hypersonic flows about slender three- 
dimensional bodies of arbitrary shape; however, the form of 
the similarity law in terms of customary aerodynamic 
parameters was not determined. Oswatitsch (ref. li) investi- 
gated the law for two-dimensional steady flow in the. limiting 
case where the Mach number lends toward infinity and, 
hence, ceases to be a flow parameter.    His formulation of the 

law, therefore, involves only thickness ratio and angle of 
attack. Goldswcrthy (ref. 4) investigated the effects of 
rotation on the hypersonic similarity law for two-dimensional 
steady How. His results corroborated, in part, the previous 
findings of Hayes and showed the potential analysis of Tsien 
to be valid. 

An investigation of the law as H applies in nonsteady flow 
was made by Lin, Reissner, and Tsien (ref. 5). In particular, 
the necessary conditions for similarity of hypersonic flow 
about oscillating two-dimensional bodies were determined. 
The analysis for more arbitrary motion of two- or three- 
dimensional bodies is appurently not available. 

Khret, Rossow, and Stevens (ref. 6) investigated the hyper- 
sonic similarity law for steady flow about nonlifting bodies 
of re-, oiutiun by comparing pressure distributions calculated 
by means of the method of characteristics. They found the 
law to be applicable over a wide range of Mach numbers and 
thickness ratio0.. Their investigation did not, however, 
include the effects of vorticity arising from the curvature of 
the nose shock wave. Rossow (ref. 7) continued this in- 
vestigation and found that the law was equally valid when 
the effects of vorticity were included in the calculations. 
These findings corroborated, in part, the observations of 
Hayes and indicated that the law may be used with con- 
fidence to investigate the. aerodynamic characteristics Un- 
steady flow about nonlifting bodies of revolution at hyper- 
sonic speeds. 

it appears desirable, therefore, to attempt to unify tlio 
different treatments of the similarity law into a single formu- 
lation. The primary purpose of this report is, then, to 
determine the form of the hypersonic similarity law for non- 
steady flow about slender three-dimensional bodies of 
arbitrary shape and to present the results in terms of custom- 
ary aerodynamic parameters. It is further undertaken 
to examine the hypersonic similarity law in some detail as 
it applies to steady flow. 

The possibility of obtaining a hypersonic similarity law 
for correlating the aerodynamic forces and moments on 
related shapes in free flight suggests a more general dynamic 
problem, that of correlating their motions with the aid of 
this law. Hence, it is also undertaken in this report to 
determine the requirements on the inertial properties of 
related bodies and the immersing fluids in order that such 
bodies may have 
similarity. 

similar free-flight paths, that is, dynamic 

1 Supersedes NACA. TN 2U3, "The similarity Law fur llyiwramle Flow At t Kfe-ruti-r Three Dimensional SIIHIHS,"by Flunk M. IIIUIMW, Stanford K. N.'ltv, and A. J. Eiders, Jr., 
1951, and NACA TN 2031, "The Similarity Law tor Nonsteady Hypersonic Plows and Ueiiu'nments for the Dynamical Similarity of KeteiUti Bodies in Free Flight," by Frank M. Haniaker 
and Thomas J. Wong, 1952. 
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SYMBOLS 

NATIONS!    VIA 1HOHV COMMITTEE KOK AERONAUTICS 

speed of sound 
eliaracleristic reference urea of body, A — bl 
characteristic width of body 

side force 
' IPOWA 

aide-force coefficient 

side-force function 

drag coefficient, ,-   .,. ; 
ipo v o -'1 

drug function 

rolling-moment coefficient, 

rolling-moment function 
lift. 

•oiling moment 
ip„WAb 

lift coefficient, 
IPOVO'A 

pitching moment 
JpolV-le 

lift function 

pitching-moment coefficient, 

pitehing-moment function 
a,  •    ,   vnwing moment 

yawmg-moment coefficient,'     .     .,.2 ., 
3 Po I I) • 

yawing-moment function 
specilic heat at constant pressure 
specific heat at constant volume 
characteristic length of body 
section drag  coefficient   of  circular  cylinder 

with axis perpendicular to the (low 
mean vd for a body of revolution 

displaced-fluid-mass factor,     Q 

length of flight path 
viscous force or moment function 
(limensionless perturbation potential function 
general functional designation 
body-shape function 
(limensionless body-shape function 
vector from the origin of the coordinate system 

to any pomi on the body 

unit vectors along coordinate axes /,.y,r, re- 
spectively 

moments of inertia of body about the I,IJ,Z 

axes, respectively 

6 
v c 

Ka = M,a, K,    .U,0 

Kt = &.K„-   U,('(?) 

JC-i/.(f>*-A/.(fJ 

•I) 

• hypersonic similarity para- 
meters 

.     , A ._,     ,     , K, 
I r-r 'r -1 

7/ 

K.z-i 

i,m,n 

M 

, A' 
I) 

dynamic similarity 
parameters 

direction  cosines  of   the   unit   outer  normal 
vector to the body surface 

Mach number 

X 
r 
/'.<7.'' 

It 

v 
A.'/.: 

<5 
t 

f.i.r 

e 
M 

P 

#,Q 

0 
/• 
l,2,n 

moments acting on body about r,y,: axes, 
respectively 

unit outer normal vector to surface of body 
static pressure 
rolling, pitching, and yawing velocities, re- 

spectively 
radius of curvature of flight path 
cross Reynolds number based on maximum 

body diameter and the component of the 
free-stream velocity normai to the body 
axis 

radius of body of revolution at any station x, 
cross force per unit length 
characteristic depth of body 
components of body velocity along the i,y,~ 

axes, respectively 
resultant velocity 
Cartesian coordinates fixed relative1 to the 

body 
forces on body along r,;/,r axes, respectively 
angle of attack 
angle of sideslip 

(' 
ratio of the specilic heals, 7=yr 

angle of roll 
orifice location on the test cones 
(limensionless   coordinates   corresponding   to 

x,y,z, respectively 
time coordinate 
mass of body 
density of the fluid 

(limensionless time coordinate, — °- 
c 

perturbation potential function 
j>r\*eT1.*ml function 

alternate time variables 
angular velocity of the body 

.>^«^*.   Ut4    . 

free-st ream condit ions 
viscous cross-force effects 
different   functions F,  (',„ 

noted 
or  ('„, except as 

SUPERSCRIPT 

- vector quantities 

Except for symbols noted above, all variables used as 
subscripts indicate partial differentiation with respect to 
the subscript variable1, 

THE SIMILARITY LAW FOR NONSTEADY 
THREE-DIMENSIONAL FLOW 

DEVELOPMENT OF THE L*W 

The hypersonic similarity law is derived from the equations 
of motion and energy and from the boundary conditions. 
In deriving the law. the following assumptions are made: 
(I) The Mach number of the uniform stream is large com- 
pared to 1; (2) the disturbance velocities are small compared 
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to the free-stream velocities; ami (3) the How is of the 
potential type. These assumptions imply that the analysis 
is restricted to hypersonic (low over slender bodies at small 
angles of attack and to irrotational flows, respectively. As 
was indicated in the introduction, the law has been extended 
to rotational flows by both Hayes and Goldsworthy. An 
analysis is presented in Appendix A to show that the rota- 
tional effects in a three-dimensional nonsteady flow obey 
the hypersonic similarity law as formulated by the potential 
analysis. Hence, the conclusions derived from the analysis 
hased upon potential flow will also be valid for rotational 
flow. The purpose of making the assumption of potential 
flow is merely to simplify the analysis. 

The coordinate system is fixed with respect to the body, 
as shown in figure 1. Also shown are the possible angular 
velocities of the body and the direction of the velocity vector 
of the free stream. The angles have the conventional 
positive sense of angles of attack and sideslip. Under 
assumption (2), these angles must be small. 

KICHRE I.—Schematic diagram of orientation of body in How. 

The development of the law involves, first, derivation of a 
simplified potential conation describing the flow second, the 
statement of the boundary conditions, and third, the trans- 
formation of these equations into nondimensional coordinates. 

The simplified potential equation is obtained from the 
nonsteady equation of motion and the energy equation which 
nre written in the following potential form: 

2(*„*,*,+*„*„*,+*„*,<f\.)   , 

2(*r*-.+ *„*„.+ <f>;-l>,8)       <> 

*,+], (*/+<IV+<JV)+ ";, - 2*+£", 

(In) 

(lb) 

These equations are expanded by expressing the potential- 
function derivatives in the following perturbation form: 

1'ior      Vn/3"', 
+*= 1 o—    ,j     ~    •>     ~l~'fi' 

*„= — V0& •*••/>„ 

$i = <pi 

(2) 

The local speed of sound a can be eliminated by combining 
the expanded forms of equations (lb) and (la). The result- 
ing equation can be simplified by neglecting higher order 
terms keeping in mind that for hypersonic (lows about 
slender shapes tpx, ipt, <pI} and a0 are small compared to \'0 

and that tpx is small compared to </>„ and <p,. The simplified 
potential equation then assumes the following form: 

^+.u„wi-^„ r.'iw-i (7-1) 'V" **-(-H o if" 0*„+ 
".! L "" "•» 

(7_l) „„ a*- +    2     „v +   2     «„-' + (7-,)«7~1J+ 

fe f"a/,VH (7- 1) t   *>,-(y- i)"!/" fo,+(y + I) '!,/n «* + 

7 — i <fit',y 

a„ <lu 

«,.- 

•Pli. 
/ , , , Mn&f:       .\f,,aip„       <pu(fi.\.     ,r (        .,        , 

''o'J    "V   «u <>n a0
2 r    a0 o0- / 

The shape of the body can be expressed by the functional 
relation 

tfCr,?/.-) = <> (4) 

The unit outer normal at a point on the body surface is given 
by the vector 

A - ••/; I w] ]• nk (5) 

mid the requirement tluit the body be slender is satislied by 
the condition 

/«1 (6) 

There are two boundary conditions which must be satis- 
fied. The first of these is that the perturbation velocity, 
imposed by the presence of the body, must vanish at targe 
distances ahead of the body.    Consequently, 

-'I ill    r — — re (7) 

The other boundary condition is given by the fact that the 
How is tangent to the body nt the surface, that is, for no 
angular velocity 

XV = 0 (8) 

The angular velocity of a body will cause an apparent dis- 
tortion of the velocity vector at the surface of the body. By 
expressing the angular velocity in the form, 

«=/» I gj+rk m 
the velocity of each point on the surface of the body is then 
given by the vector cross product 

5XA=-=(23— ry)i-t (rx—p:)j+(.py—gt)k (10) 

The boundary condition on the surface ui the body then 
becomes 

(T-ZyJn-X^i) (ii) 
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After equation (10) is expanded and combined with equation 
(11), and higher order terms neglected in accordance with 
equation (6), the second boundary condition assumes the 
following form: 

VeQt-(Vt0-i>,+rx~pz)Gl+ 
(I\a+v.+q*-/'?/)G, = 0 at G=0 (12) 

In obtaining the similarity law for flow about related 
bodies, the equations of motion and boundary conditions are 
expressed in a nondimensional form. A nondimcnsional 
coordinate system is introduced by the following affine 
transformation: 

t    f        V y    2        6(i0M0 

COt C 
(13) 

and  a nondimensional  perturbation  ])otential  function  is 
defined by the relation 

/(fitj.r. r)——        p-.-r, 
a.il/„f (|) 

(14) 

where c, b, and < are a characteristic length, width, and depth 
of the body, respectively. Under the coordinate transfor- 
mation given above, equation (4) takes the form 

0(«.i».r) = O (15) 

By substitution of equations (13) and (14), equations (3), 
(7), and (12) become, respectively, 

A?(./„ -f /«)+(0V,, [AV -I (T - i) A7/< - 

(7+D @ A,A^,+ (7-D ff,/C./r+ 

^rY^y^'V+^WV+fY- n A77,- il+^rAV+ 

(7-l)A7.A-(7-l) (j|) A'.AV,-)-(7 I l)K,KaJt+ 

72 ' (©S KW+y 2 ' A,7rM(7- l)A,a/,- l]+ 

2Kf)^[(l)^-^^>(f)^[-A'-^- 
K.Kfft + K, (|) A (A'. I• A7r)]+ A',/t( (/u + /v',/t) J + 

»-[(t)-(g)V.+(t)<-K;i)'0-+[(t)+ 

*+®KK')']*-° <l8) 

where 
A-, = Af„ (10) 

AV   Mn" c 

A'„ = Me a 

Kt=M„p 

*-=M® 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

It is seen then that, if two related bodies are flying with given 
motions and attitudes so that the parameters, equations (19) 
through (25), are the same for both bodies, the flows arc 
characterized by the same function/({,ij,f,r) and are there- 
fore similar. The requirements expressed by the non- 
dimensional form of the body-shape function, equation (15), 
and the similarity parameters, equations (19) through (25), 
therefore constitute the similarity law of hypersonic flow. 

A closer examination of the parameters A",, Kb, Ka, and 
A'o reveals that an essential property of similarity is that the 
lateral dimensions and the slopes of a body with respect to 
the (low direction are in inverse proportion to the flight 
Mach number. In fact, the remaining parameters Kp, K„ 
and Kr, which relate to nonsteady motion of the body, can 
be interpreted by means of the same property. In rolling, 
for example, points on the body surface , '-m helical 
motions, and the quantity pb/]~0 in equat is simply 
proportional to the slope of the helix with rtt (i> to the flow 
direction. This slope must be inversely proportional to the 
flight Mach number. Similar arguments may be applied 
to A, ami Kr. 

Because of the complexities of algebra involved, the effects 
of angle of roll were not included in the previous equations. 
II<itl they been includcdj however, the result would h» the 
same as above with the additional requirement that the 
angle of roll must be the same for the related bodies. Hence, 
the additional hypersonic similarity parameter is 

Kt (26) 

CORRELATION OF AERODYNAMIC FORCES AND MOMENTS 

The correlation of aerodynamic forces and moments on 
related bodies in unsteady hypersonic flows can be developed 
by consideration of the pressure distribution over the bodies. 
The pressure relation is obtained from the energy equation, 
equation (2), and is given in the following form: 

/' 
, ,7-1  r, 

i+7
2""!(rM 20.) 

(27) 

When this expression is simplified (in a manner paralleling 
the development of the preceding section) to include only 
higher order terms and put into nondimensional form, i( 
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reduces to a function only of the nondimensional coordinates 
nnd tiic similarity parameters (for a constant y). 

p     p 
i> = r> (£> i. £, T; Kt, Kt, Ka, K$,Kt, A,, K„ A,)     (28) 
l o     * 0 

It is clear from this relation that for similar flows, the ratio 
of the local to the free-stream static pressure is the same at 
corresponding points in the flow fields.3 

The correlation of the aerodynamic, forces and moments is 
then obtained with the aid of equation (28) by integration 
of the appropriate components of the pressure forces over 
the related shapes. This correlation can be given in the 
following forms: 

••A/ L= (\— ft(A|, A&, Ka.'Kii, Aj. Kp, A,, A,) 

•WrD=rD= (~D(K„ K„ Ka. K,, A,. K„ A'f. AM 

M0CC= rc= CC(K„ Kb, Ka, KB, A8. K„ K„ Kr) 

1    r. MaCm=Cm = Cni{K, . . . Kr)+^Vm2(K, h\) 

<\=<\ = ('mi{K, . . . K)+jfj (\t(K, . . . Kt) 

M0e,^C,*=C,(K, . Kr) 

• (29) 

it appears, from the equations for the pitchiiig-moment and 
yawing-moment functions of equation (29), that these two 
functions cannot be correlated for related but otherwise 
arbitrary body shapes. However, a careful examination 
of the order of magnitude involved in the analysis indicates 
that the second term on the right in these expressions becomes 
negligible in magnitude in all but two very special cases. 
In tho case of the pitching-moment function, both terms on 
the nghi side become ol Hie same order of magnitude when 
the / and n components of the unit normal to the body 
surface are very small.    This condition corresponds to an 
r..v.i    i   ..   ..*:   .i  /^..    . .     I    -. . ft r»   /  %        Tf   1 ..iiriuuu    >utnui   1111   «!.->   anutlil   111   H^uu'   &    til).        11,    IIOIVCVIT, 

the vertical fin is mounted on a body, or used in combination 
with a body equipped with horizontal wings, the contribu- 
tion of the vertical tin to the total pitching moment will be 
very small indeed. The contribution of the second term in 
the pitching-moment  function for the. entire body will, of 

(a) (b) 
(a)  Pitching moment. (b)  Yawing moment. 

Kir;rRE 2.—Bodies excluded from similarity considerations as applied 
to pitching end yawing moments. 

course, he correspondingly small. An analogous situation 
exists in the yawing-moment function for an isolated wing 
(fig. 2 ()))) in which the / and m components of the unit 
normal vector are both small. For most practical aero- 
dynamic shapes, therefore, the offending terms can be 
neglected, and correlation of the aerodynamic coefficients 
can be achieved as shown in the following relations: 

•W',.    (', - I ',(K„ A\, Ka, Kt, K>, K„, K„ Kr) 

•W<',,   ("',, -- (\{K„ Kh, Ka, K«, Ks, KP, A„ A,) 

.!/,/',.= Cc= CC{K„ K„, K„ K„, Aj, A„, K„ A,) 

Mat'„ = (\ = CJK„ A„, A„, K,, A,, A„ A„ A,) 

('„ — ('„-- ('„(A,, A», ha, Ka, Aj, Kp, A,, A,) 

.»/.''• (\{K„ A„, Ka. Kt, AJt A',. K„ K,) 

Y    (30) 

DETERMINATION OF REQUIREMENTS FOR DYNAMIC SIM- 
ILARITY OF RELATED BODIES IN FREE FLIGHT 

The requirements for dynamic similarity of related bodies 
in free flight are developed on the assumption that the forces 
and moments on such bodies are correlated by the law of 
hypersonic similarity. In order to determine the conditions 
for dynamic similarity to be coexistent with hypersonic 
similarity, the dynamic equations of motion should be, 
transformed to the same dimensionless coordinate system 
that was used in developing the requirements for hypersonic 
similarity. In addition, the velocity and force quantities 
should be expressed in terms of hypersonic similarity param- 
eters. 

In this dynamic system, only those forces are considered 
which correspond to the "power-off" conditions in free flight. 
The coordinate axes are taken to be principal axes of the 
body so that the products of inertia vanish. The dynamic 
equations of motion of the body are given by the relations 

I/J- re +(/>r 

rs — /nr— ru 

»•« — IJU  rl>v 

A 

Y 

Z 
M J 

GiO 

•J/J 
052) 

The translalional and rotational velocities may be expressed 
in terms of hypersonic similarity parameters, the Mach 
number, and the speed of sound of the free stream by the 
relations 

u = a0^[(l, V-— aaKa, w=aBK,\ 

K, K, A„ (**) 
V ~aa JT» 7 •'"'"u—- r=o0- la f>  7 

1 Analogous statements can be made for the ratios of local to fre&*streani values of temperature, 'lenity, and Math rjumber. 
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Similarly, the aerodynamic forces and momenta are given in 
terms of the correlation functions by the relations 

(34) 

,tf.V       2       ) 

v    * /aB
2Mnbtpa\ 

}-Cc\       2       ) 

y^p   /a„2M0btp„\ 

By substituting equations (33) and (.14) into equations (HI) 
and (32), and by treating only that length of flight path 
over which M0 ean be considered constant, the following set 
of equations is obtained: 

'/A 3 . ,,    Kpha 

(IT A* 
KJ'C 

dK„ A.pAjj 
>lr      n«       A, KJ\ 

(35) 

(38) 

(37) 

1       dKp    /   1 1   \ KfK, _ A^ /-, ,„fiv 
,_XA6 rfr   VAV, A,_ J :W   37? '     {M) 

J_rfA,_/   1   _   1   \A,A„=f, 
A,,_„ rfr     \ff,.,   Ki-Z/   Kb 

A',_, </T     \A',_T   A',_,/    A'(, 

(39) 

where A',, is given by 

and where 

A' = 
/> 
M 

C2/> A - J = =:/;^ 

A, -|f = 

1 y-y 

f clD A, — * ~ /,-. 

D: Cbtp„ 
2 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

all the terms involved may be of comparable order of magni- 
tude. Consequently, since equation (38) is the relation for 
rolling effects, it is indicated that flight paths which include 
rolling cannot be correlated by this method for obtaining 
dynamic similarity. For motions that do not involve roll, 
it is seen that dynamic similarity will exist for related shapes 
if the hypersonic similarity parameters and the dynamic 
similarity parameters given in equations (41) through (44) 
remain invariant. These dynamic similarity parameters re- 
late the masses of the bodies and the immersing fluids, as 
well as the distribution of the mass in the body. 

For rolling motions only, correlation can again be achieved 
but with a slightly different set of parameters. In this case, 
only equation (38) remains and can be rewritten as 

xk^-*' (46) 
where, now 

AV^r (47) 

The initial conditions to this set of equations are the initial 
values of the hypersonic similarity parameters, 

If both hypersonic similarity and dynamic similarity are 
to be achieved, it is required that equations (35) through 
(40) be independent of the. Mach number as a separate 
variable. The elimination of .\f0' from equation (38) is 
impossible in the general case, even approximately, because 

3 The parameter A", Is equivalent to a familiar stability-analysis term known as the relative mass factor. 

so that correlation for pure rolling motions is now given by 
the  hypersonic  similarity  parameters  and   the  parameter 
A",.,: 

A familiar example of motions where rolling effects would 
be absent is the case of motions confined to the plane of 
symmetry of the body, the so-called longitudinal motions. 
To extend the application of this law to the more general 
case where there are lateral motions as well as longitudinal 
ones, but no roll, it is necessary to have a suitable symmetry 
of shape and to have the inertial properties satisfy the 
relation 

Ky„y=Kt.t (48) 

When these conditions are fulfilled, the flight paths of 
related bodies ean be correlated. As an illustrative example, 
the disturbed motions of related missile shapes can be ex- 
amined. The lengths of corresponding portion? of related 
flight paths would be proportional to the corresponding 
lengths of the shapes. This property can be used to relate 
the amount i>f damping in the disturbed flight paths. As 
shown in Appendix B, the radii of curvature at corresponding 
points of the flight paths would be proportional to the product 
of the body length and the flight Mach number. Some of 
these points are illustrated in the example given in figure 3. 

APPLICATION   OF   THE   LAW   TO   PARTICULAR   SHAPES   IN 
STEADY FLOW 

In steady How, the three similarity parameters Kp, A',, 
and K, are zero and equations (30) reduce to the following 
form: 

•IA/ i— (\— ' t(A,,A»,A«,A'fl,Ai)' 

•W '„=P»= <\(K„Kb,K.,KM 

•I/B/'C— f C— t 'r(A,,A„,A"a,Ajj,Aa) 

•M(/ m "" I m— ( •(A,,A(,,A«,A,i,Aa) 
(49) 
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FIOI'BE 3.—Ro!atod*ving-bo<Iy combinations at hypersonic sjM'cds. 

It is important to note that the correlation of the aerodynamic 
coefficients given by equations (30) was obtained oil the basis 
of two restrictions as to allowable body shapes. (See section 
Correlation of Aerodynamic Forces and Moments and also 
fig. 2). These restrictions applv equally well to equations 
(49). 

BODIES OF REVOLUTION 

For bodies of revolution, equations (49) reduce to ' 

.U«/\='', = '',. (AT,, A\n 

(.50) 

where Kb is eliminated as it is identical to K,.b It is apparent 
from these relations that the corresponding force and moment 
parameters have identical values for related bodies of revo- 
lution provided the corresponding similarity parameters 
have identical values. It will now he shown that this 
conclusion can be generalized to include significant effects 
of the viscous cross forces on related inclined bodies. 

The viscous cross force arises from the boundary-layer flow 
transverse to the body axis. A method of estimating this 
force along with the lift, drag, and pitching-moment co- 
efficients associated with it has been suggested by Allen in 
reference 8 a:-.;! is presented in Appendix V. The resulting 
expressions for these coefficients (sec eqs. (C*«i) in Appendix C) 
are transformed to the nondimensional form, and the 
following relations are obtained: 

J\(K,J<a)   y 

M<,('.M=cdcF3(K„Ka) 

(M) 

For slender bodies of revolution of the type under considera- 
tion, &i is primarily a function of the Maeh number and 
Reynolds number of the flow component normal to the body 

axis.    Consequently,  t-bexe expressions can  be  reduced  to 
the form 

MAt= ctr= <\{KJCM 

M„Cm>=rm=(\(K„Ka, Re) J 

(52) 

where Re is the cross Reynolds number. For small angles 
of attack, the cross Maeh number is identical to Ka. It is 
clear, when comparing these relations with those, of equation 
(.50), that the latter relations apply with equal validity when 
viscous cross-flow effects are considered, provided that /?c 

is included as a similarity parameter.8 

Nonlifting cones and ogives.—In reference 6 an analysis 
was performed to determine the limits of applicability of 
the hypersonic similarity law for nonlifting cones and 
ogives.7 To determine this limit for cones, surface pressures 
were calculated using reference 9 and were plotted as a 
function of the similarity parameter K, as shown in figure 4. 
A single curve favoring the slender cones was faired through 
the calculated points. It is apparent that the similarity in 
pressure holds for a wide range of values of K, for slender 
cones. If it is assumed that a pressure deviation of 5 percent 
from the faired curve can be tolerated in using the similarity 
law, then limits of similarity can be determined as a function 

0-0° 
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KIIMHK I.   -Variation of pressure ratio, /'/''o, with similarity parameter, 
Ki, for nonlifting cones. 

• Bemuse of the axial symmetry of bodies cf revolution, only angles of attack arc considered.   This latin consideration obviates a discussion of force ami moment   characteristics at 
angles of side.       or combined inplc.i «f attack and sideslip, while roll, of course, itas no incanine.    It is clear, then, thai the similarity parameters A'.iand A** are eliminated from I his analysis 

8 If the angle of attack Is wro, i.« Is also zero, and the expression for tho drag parameter reduces t" a form equivalent to that obtained iiy 'IV iti refeicmv I. 
• It is assumed that the viscous flo'v considered here does not significantly Influence the potcniial. in viscid flow discussed previously.   Hence, the force and moment coefficients result im: 

from these flows may bo superimposed. 
' It should be notod thet oelv»j v.u act exactly a related set of bodies; nevertheless, they wen' chosen in this study since the configuration is of Interest, and the ile\ latimi i,t (hickness 

distribution Is not significant for slender bodies. 
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of Much number ami fineness ratio c/t of the cone. The 
limits determined in this way tire illustrated in figure 5 (a). 
The shaded area indicates the regions of Much number and 
fineness ratio where the similarity law as applied to pressure 
on the cone will be in error 5 percent or more. 

Since the surfnee slope of an ogive is largest at the vertex, 
the pressures at this point should provide a critical test for 
similarity of pressures. Accordingly, the limits of applic- 
ability of the law for ogives were determined in reference 0 
from consideration of the pressures over a cone tangent to 
the ogive at the vertex. Figure 5 (b) presents the limits of 
applicability for ogives as obtained by this method. These 
results illustrate the conclusions of reference 4 that the law, 
as applied to nonlifting cones and ogives, is applicable over 
a wide range of Mach numbers and fineness ratios in spite of 
the simplifying assumptions made in the derivation. 

A check of the applicability of the hypersonic similarity 
law in a rotational flow field was performed in reference 7 
by comparing the pressure distributions, obtained by the 
method of characteristics, over ogive cylinders at several 
values of K,. The pressure distributions for two ogive 
cylinders at a value of K, of 2.0 are presented in figure fi 
and serve to illustrate the general results obtained in refer- 
ence 7. The high degree of correlation of pressures in figure 0 
indicates that the hypersonic; similarity law applies in a 
rotational flow field and verifies the analysis presented by 
Hayes in reference 2. 

Lifting cones.—For bodies of revolution al angles of at- 
tack, a limited experimental check was made in the Ames 10- 
by 14-inch supersonic wind tunnel. Two cones having fineness 
ratios of 3.0 and 4.9 were tested at Mach numbers of 2.75 
and 4.46, respect iv-.-Iy; thus, the value of A', >vas 0.91. 
Overlapping values of K, up to 14° were obtained. Pressure 
measurements were made at the locations shown in figure 
7 fur angles up to ri° The results are shown in figure 8 as a 
function of K„. Agreement with the prediction of the 
similarity law is generally observed, in that ihe values of 
/>//>0-for corresponding points on the two bodies lie essentially 
along the same curve. The exception to this agreement i* 
on the lee sides of the cones (e=180°) where it is noted that 
significantly different  curves are  defined.    This difference 

af 

0 2 4        6 
Fineness  ratio, c/t 

? 4 6 8 10 
Fineness   ratio, c/t 

(a)  Cones. (b)  Ogives. 
KiuniK 5.— liange of applicability of similarity law for nonlifting eone 

and ogives. 

is believed to be the result of the dissimilar flow separation 
from the two cones, caused by the fact that identical values 
of Rc could not be obtained for the two cones at the same 
value of K„. This difference in Re should not affect the 
pressures appreciably where separation does not occur. 
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Kim HK <>.—Variation of pressure ratio,  I'/Pn, along nonlifting ogive 
cylinders for a value of the similarity parameter, K,, of 2.0. 
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Phil-Re 7-—Location   of  orifices   on   two   cones   tested   at   r-.". = 0.'.)l. 
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FIIIIRK 8.—Variation of pressure ratio, l'/l\ with fV«, for two rones 
tented at K,   0.91. 

WINGS AND WINC-BODY COMBINATIONS 

If, for spanwiso symmetric wings, only angle of iittack is 
considered, the similarity parameters A'jj and K& vanish 
from equations (49) and only three of the aerodynamir 
coefficients remain. The corresponding force and moment 
functions arc reduced to the following form: ' 

M0<'„= ('•„= ('m(A'„A'»,A'„)  * 

(53) 

These relations also apply, of course, to wing sections. In 
this case, b and therefore A"6 arc infinite and it is seen from 
equations (16) through (18) that the terms involving A'j, 
vanish and the equations reduce to the two-dimensional 
equations for hypersonic flow. The similarity parameter 
Kb is thus eliminated from equation (33). This result is 
equivalent to that presented in reference 1 * 

Of practical importance is the conclusion to be drawn 
from application ot the dimetisionless equation of motion 
(eq. (16)) and the dimensionless boundary condition (eq. 
(18)), to steady flow about thin wings at zero angle of yaw. 
It is noticed in the equations that the parameter, Kb, always 
appears in the form 

If 6 is of the same order of magnitude as c, then, consistent 
with the other approximations made in developing this 
equation, the terms involving (K,/Kb)2 are to be neglected. 
Performing this operation, however, yields the equation of 
motion for two-dimensional flow. Thus, it is indicated that, 
if the aspect ratio is of the order of magnitude of one or 
greater, hypersonic flow about wings may be treated ap- 
proximately as a two-dimensional-flow problem. The latter 
problem is, of course, relatively simple to solve. 

From a physical point of view, this conclusion stems from 
the fae.1 that, in supersonic, flow, the effect of a disturbance 
at a poi;;t is confined to the conical zone formed  by the 

1 Parameters equivalent 10 these were obtained l>y Tsien and, although tint iiuhlisaed, we 
completion of this Investigation. 

• The exponent? of -W0 obtained here are dillerent from those obtained in reference i. becails 

Much lines from that point. For very high Mach numbers, 
this zone of influence is a narrow region behind tho dis- 
turbance. Consequently, conditions along a streamline are, 
for the most part, independent of the conditions along 
adjacent streamlines.1* For thin wings in hypersonic flow, 
therefore, it can readily be seen that the zone of influence of 
disturbances caused by wing tips will, for example, be small 
compared to the wing urea if the aspect ratio is greater than 
one. The effect of the lip disturbances on the aerodynamic 
characteristics of the wing will, of course, be correspondingly 
small. 

Wing-body combinations may bo thought of merely as 
irregular-shaped bodies. As such, the aerodynamic coeffi- 
cients are correlated by equations (49) with the restrictions 
discussed in relation to these equations. The illustrative 
example, given in figure 3 in connection with the free-flight 
motion of a wing-body configuration, can be re-examined on 
the basis of steady flow. It is seen that in going from a 
Mach number of 4 to a Mach number of 8, the wing and 
body lengths are doubled, the angle of attack is decreased by 
one-half, while the body thickness and wing spans remain 
the same. The changes in some of the aerodynamic coeffi- 
cients are also shown in the figure. 

CONCLUDING REMARKS 

The similarity law for nonstcady, inviscid hypersonic (low 
about slender three-dimensional shapes has been derived in 
terms of customary aerodynamic parameters. The conclu- 
sions drawn from the potential analysis used to derive the 
law were found to apply also to rotational flows. As a 
direct consequence of this law, it was found that the ratio of 
the local static pressure to the free-stream static pressure is 
the same at corresponding points in similar flow fields. With 
the aid of this law, expressions were obtained for correlating 
the forces and moments acting on related shapes in hyper 
sonic flows. 

It was found that the motions :>f related bodies in free 
flight could be correlated usinc the hypersonic similarity 
parameters and additional parameters relating the incrtial 
properties of the bodies and the air densities. The dynamic 
similarity of the free (light of related bodies can be obtained 
for motions which include pitching and yawing but no 
rolling. For pure rolling mottous, similarity can again be 
achieved. 

In the case of steady (low a be it inclined bodies of revolu- 
tion, the correlations of forces and moments derived from 
the similarity law can be generalized to include the significant 
effects of the viscous cross force. 

The results of a computational analysis, using the method 
of characteristics, showed that the similarity Saw as applied 
to nonlifting cones and ogives is applicable over a wider range 
of Much numbers and fineness ratios than might be expected 
from the assumptions made in the derivation. 

AMES AERONAUTICAL LABORATORY, 

XATIOXAI. ADVISORY COMMITTEE FOB AERONAUTICS, 

MOFFKTT FIELD, CALIF., June  ">, t95t. 
.resented in the form of lectoru notes which wore brought to the attention of the authors after 

t is used as a reference area, rather  ' an c-6. 
'• This res lit holds, In fact lor nonstoady as well as steady hy,wrsonic flow about thin wings, as pointed out by Kggcrs In reference 10. 



APPENDIX A 
EXTENSION OF POTENTIAL FLOW ANAPTSIS TO ROTATIONAL FLOW 

The hypersonic similarity law ran he extended to rotation ill 
flows by (he method of Hayes (ref. 2). This extension is in 
fact demonstrated by Hayes' results. However, to under- 
stand fully the reasoning involved, it is instructive to elabo- 
rate on his analysis. Hayes showed that the hypersonic 
potential equation for steady flow about slender shapes was 
identical to the nonsteady potential equation in one less 
spatial coordinate under the transformation 

x=--a0.\f„e (Al) 
In the case of two-dimensional How, the transformation, 

equation (Al), allows, for example, the upper surface of (he 
body profile to be replaced by the upper surface of a moving 
piston as shown in figure 0. The piston motion must be 
such that a given piston displacement >h al time 0, will be 
the same as the ordinate on the body profile at the coordinate 
J-I given by the relation /i - «0.\/t,fl,. 

Pision 

/,(*> 

(a) 

(a)   Su-ildv flow. 

Ki«;i KK (I.—Two-dimensional steady flow and analogous onc-dinii'ii 
sional nonstcadv How. 

(b) 

(li)  AnaloKoni nonstendv flow. 

In investigating tiie physical significance of this trans- 
formation, Hayes pointed out (hat its existence resulted 
from the basic assumptions of slender bodies and large 
Much numbers. Since, as a result of these assumptions, the 
x component of the fluid velocity does not change appreciably 
and is always much greater than the local speed of sound, 
there is essentially no chance for disturbances to propagate 
in the x direction. This is the essential feature (hat permits 
the. replacement of x bv the time variable 8 and, hence, lite 
existence of an analogous nonsteadv flow. 

Hayes further showed that in hypersonic flow about 
slender shapes the local Much number remains large com- 
pared to one, even in the presence of strong shock waves 
caused by small surface inclinations. Consequently, the 
consideration of the, hypersonic flow about a slender body as 
a nonstationary problem in one less spatial dimension re- 
mains valid when shock waves and the resultant entropy 
gradients are present. 

One further feature of Hayes' analysis, which is not 
explicitly stated in reference 2, is (hat similarity follows 
directly from (he existence of the analogous nonsteady flow. 

This feature is illustrated for two-dimensional flows as 
follows: The motion of the nonsteady boundary (in this case, 
tHo piston face) can be expressed in the following dimen- 
siomloss form: 

Upon transforming to the two-dimensional steady flow sys- 
tem, by the substitution of equation (Al) into the functional 
relationship on the right side of equation (A2), we obtain 

'•(? ,.;,„)•'»(;,,s)-" a K) ««> 

i-„(j> K, = const ant (A4) 

Equation (A4) expresses the conditions for which the non- 
ste ady flow system can replace a steady flow system; namely, 
tliut the body profile must be expressible in a specific non- 
dimcnsiomil form and that the parameter, K,. must be 
constant for all profiles given by this form. These are, of 
eo«irse, the conditions of hypersonic similitude in two- 
dimrnsioniil steady flow. The extension of these considera- 
tions to three-dimensional steady flow is straightforward 

To extend these concepts and results to three-dimensional, 
nonsteady flow, the nonsieady part of the flow may be 
co nsitlered, in the analogous nonsteady flow, as a nonsteady 
:.w-ntnnn t on the already iious'.cady boundary. This can be 
(|r»nioiislrated with reference to the potential analysis as 
follows: If the transformation, i — a0.\f04>, is used on the 
rojnation for steadv-statc hypersonic flow in perturbation 
fo»rm '' 
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with an additional variable change of 

n-=9H + (AS) 

the same equation (AC) is obtained with ^ replaced by S2. 
Hence, Haves' conclusions concerning steady-state, three- 
dimensional flow should apply equally well to uonsteady, 
three-dimensional flows. 

APPENDIX B 
CORRELATION OF THE FLIGHT-PATH CURVATURE 

Consider related bodies moving through properly related 
fluids in paths of finite radii of curvature, Equating the 
centrifugal force to the side force, the following relation is 
obtained: 

M-/-rcip.r.M (BO 

After rearranging in terms of similarity parameters, equation 
(Bl) becomes 

"-A =rcKj, r;=eonstant (B2) 

The parameter A/0c//? correlates the radii of curvature at 
corresponding points of similar flight paths, 

This conclusion is also true for curved flight in the vertical 
plane. 

APPENDIX C 
FORCES AND MOMENTS DUE TO VISCOUS CROSSFLOWS ON 

BODIES Or REVOLUTION 

In reference 11, Prandtl demonstrated that laminar viscous 
flows over infinitely long inclined cylinders may be treated 
by considering, independently, the components of the flow 
normal and parallel to the axis of the cylinder. Jones, in 
reference 12, applied this concept to the study of boundary- 
layer flows over yawed cylinders. The work of Prandtl and 
Jones suggests, as indicated by Allen in reference 8, that the 
cross force on slender inclined bodies of revolution may be 
estimated in the following manner: Each cross section of the 
body is treated as an element of an infinite cylinder of the 
same radius. The cross force per unit length on such a 
cylinder is given by the following equation: 

,s-p-- /r,;f/3„\ *,,-' sin2 a (Cl) 

The incremental lift, drag, and moment produced by this 
cross force are then given by the relations 

lift     irJcpn\'u
2 sin2 « cos or 

drag —rc,,^,,!',,2 sin1 c 

moment---rjT^poV,,2 sin2 a 

1! 

(02) 

Retaining leading terms in a and integrating over the body, 
where. r=r(x), the aerodynamic coefficients are given by the 
equations 

Ci. 

c„ 

~A   J„"/J 

A    lr'lr 

2r\,r«
2  f, 

Ac   J„ 

(03) 

where the reference area is proportional to the maximum 
cross-sectional area of the body, and the reference length is 
the body length. The coefficient c,ic is the mean cdc for the 
body of revolution, and has therefore been taken outside 
the integral. 
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